

Feb 19-8:47 AM

Feb 13-9:53 AM

Evaluate
$$\lim_{x\to\infty} \frac{2x-1}{5x+3} = \frac{\infty}{\infty}$$
 I.F.

Divide numerator and denominator by

the highest power of x .

 $\lim_{x\to\infty} \frac{2x-1}{5x+3} = \lim_{x\to\infty} \frac{\frac{2x}{x}}{\frac{5x}{x}} + \frac{1}{x} = \lim_{x\to\infty} \frac{\lambda - \frac{1}{x}}{5 + \frac{3}{x}} = \lim_{$

Feb 14-8:50 AM

Evaluate
$$\lim_{x \to -\infty} \frac{4x^2 + x}{5x^3 - 1} = \frac{\infty}{-\infty}$$
 I.F.

Divide numerator and denominator by the highest power of x

$$\lim_{x \to -\infty} \frac{4x^2 + x}{5x^3 - 1} = \lim_{x \to -\infty} \frac{\frac{4x^2}{x^3} + \frac{x}{x^3}}{5x^3 - \frac{1}{x^3}} = \lim_{x \to -\infty} \frac{x + \frac{x^2}{x^2}}{5 - \frac{1}{x^3}}$$

Evaluate $\frac{4x^2 + x}{5x^3 - 1}$ Sor $x = -1000$
 $\frac{4(-1000)}{5(-1000)} + (-1000)$
 $\frac{4(-1000)}{5(-1000)} = -0.0007 \approx 0$

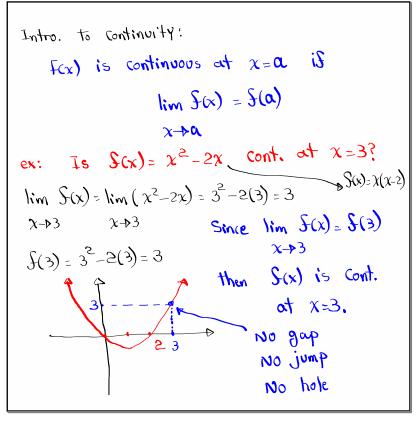
Feb 14-8:59 AM

Evaluate

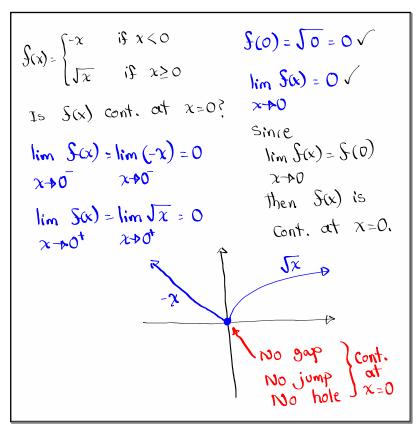
$$\lim_{\chi \to \infty} \frac{5\chi^2 + 7}{3\chi^2 + \chi} = \frac{\infty}{\infty} \quad \text{I.F.}$$

Divide everything by χ^2

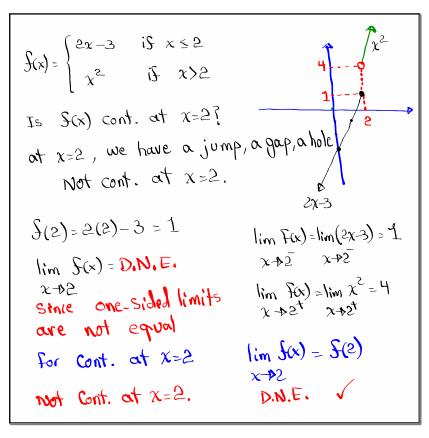
$$\lim_{\chi \to \infty} \frac{5\chi^2 + 7}{3\chi^2 + \chi} = \lim_{\chi \to \infty} \frac{5}{3} + \frac{1}{\chi^2} = \frac{5}{3}$$

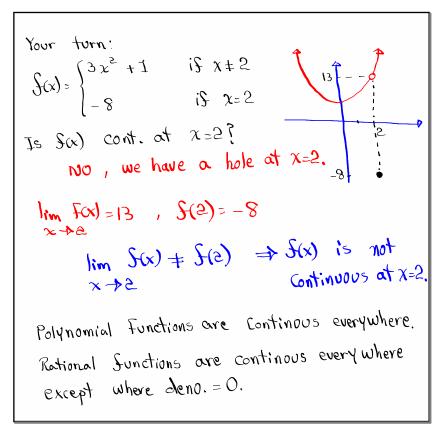

$$\lim_{\chi \to \infty} \frac{2 - \chi}{4\chi - 1} = \frac{\infty}{-\infty} \quad \text{I.F.}$$

$$\lim_{\chi \to \infty} \frac{2 - \chi}{4\chi - 1} = \lim_{\chi \to \infty} \frac{2}{\chi} - 1$$


Divided everything

by χ , and Simplified


Feb 14-9:07 AM


Feb 14-9:13 AM

Feb 14-9:19 AM

Feb 14-9:24 AM

Feb 14-9:33 AM

Is
$$S(x) = x^3 - 5x^2 + 4$$
 cont. at $x = -2$?

Yes, $S(x)$ is a polynomial function.

Is $S(x) = \frac{x - 4}{x + 1}$ cont. at $x = -2$?

Yes, $S(x)$ is a rational function,

if is not cont. at $x = -1$.

Y.A. $x = -1$

V.A. $x = -1$

When $y = 1$
 $y = 1$

Feb 14-9:41 AM

Sind all
$$x$$
 values of discontinuity

1) $f(x) = x^2 - x - 6$

None, $f(x)$ is Polynomial => (ont.

 $f(x) = \frac{x}{x^2 - x - 6}$

Aiscontinuity happens

when deno = 0.

Aiscontinuous at

 $f(x) = \frac{x}{x^2 - x - 6}$
 $f(x) = \frac{x}{x^2 - x - 6}$

Feb 14-9:50 AM